
Talk Title Here  
Author Name, Company

Implementing PID allocation
with the IDR API 
Gargi Sharma, Outreachy Intern

Process IDs

• Every process has a unique identifier that
represents it, called the process ID (pid).
–The first process that the kernel runs is called the idle
task and has the pid 0.

–The first process that runs after booting is called the
init process and has the pid 1.

PID Namespaces

• A key point in understanding PIDs is to understand
their use in namespaces.

–PID Namespaces isolate the PID number space.
•allow containers to suspend/resume processes in the container.

•migrate to a new host while maintaining the same PIDs.

–Hierarchically nested in parent child relationship.
–Process has a different PID in each layer.

How were process IDs allocated?

• Each namespace has an associated bitmap.
• alloc_pid allocates the PIDs serially.

–alloc_pid searches the bitmap for the last allocated
PID and allocate PID sequentially.

–If PID reaches the maximum limit, assignment wraps
around.

PID lookup and deletion
• To make the process of looking up PIDs faster,

PIDs are added to a hashlist.
– Iterate over the hashlist to find the PID that is being

looked for.

• Iterate through all the namespaces where the
PID is visible and free it in each namespace.

– The PID is also deleted from the hashlist (used for
lookup).

Replacing the bitmap
implementation with
the IDR API

IDR API

• IDR: a generic mechanism to associate an
integer with a pointer.

• Internal implementation done using a radix tree
–convenient to associate an integer and pointer.
–high search efficiency.

Why use the IDR API?

•Simplify the kernel code.
–Replace custom code with a generic API.

•Reduce the kernel size.
•Make PID allocation faster.

–IDR API has an underlying Radix tree implementation,
hence is faster than a bitmap + hashlist (used for
lookup).

Kernel size - Before and After

• pid_namespace.o

• 60.05% decrease.

text data bss dec hex

Before 5692 1842 192 7726 1e2e

After 2854 216 16 3086 c0e

Kernel size - Before and After

• pid.o

• 70.16% decrease.

text data bss dec hex

Before 8447 3894 64 12405 3075

After 3397 304 0 3701 e75

Performance - Before and After

• ps with 10,000 processes

• 22.92% faster than bitmap implementation.

With IDR API With bitmap

User 0m0.052s 0m0.060s

Sys 0m0.392s 0m0.516s

User+Sys 0m0.444s 0m0.576s

Performance - Before and After

• pstree with 10,000 processes

• 17.81% faster than bitmap implementation.

With IDR API With bitmap

User 0m0.536s 0m0.612s

Sys 0m0.184s 0m0.264s

User+Sys 0m0.720s 0m0.876s

Performance - Before and After

• Calling readdir on /proc with 10,000 processes

• 20.00% faster than bitmap implementation.

With IDR API With bitmap

User 0m0.004s 0m0.004s

Sys 0m0.012s 0m0.016s

User+Sys 0m0.016s 0m0.020s

IDR API interface
• idr_alloc{_cyclic}(struct idr *idp, void *ptr,

 int start, int end, gfp_t gfp_mask)

• idr_remove(struct idr *idp, int id)

• idr_find(struct idr *idp, int id)

• idr_replace(struct idr *idp, void *ptr, int id)

• idr_destroy(struct idr *idp)

Allocation using the IDR API

• Associate an IDR structure with each
namespace.

• Call idr_alloc_cyclic(idr, NULL, pid_min,
pid_max, GFP_ATOMIC) followed by a call to
idr_replace(idr, pid, nr).

• idr_replace() is called so that find_pid_ns() does
not find a non initialised pid.

Lookup & deletion using the IDR API

• Lookup: idr_find(idr, nr)
• Deletion: idr_remove(idr, nr).
• To destroy a namespace, each of the individual

pages in the bitmap had to be freed.
– Replaced with a call to idr_destroy(struct *idr).

Simplification of the kernel code
Before
struct pid
*find_ge_pid(int nr, struct pid_namespace *ns) 
 {  
 struct pid *pid; 
 do {  
 pid = find_pid_ns(nr, ns); 
 if (pid)  
 break;  
 nr = next_pidmap(ns, nr); 
 } while (nr > 0); 
 return pid; 
 }

After
struct pid

*find_ge_pid(int nr, struct pid_namespace *ns) 
 {

return idr_get_next(&ns->idr, &nr); 
 }

Experience as an Outreachy intern

• Status: Patches applied to Andrew Morton’s -mm tree.
• By far the most exciting thing I have done as a software

engineer!
• Had great mentors who were always there. Thank you,

Rik and Julia!
• Learnt more about operating systems, version control, etc
• Became friends with really cool former interns!
• Read more about my internship at:

• medium.com/@gargi_sharma

http://medium.com/@gargi_sharma

Děkuji! :)

